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We consider the flow of rapidly rotating fluid over topography in a circular 
basin. The equations of motion (here the inviscid quasi-geostrophic vorticity 
equations) can be integrated exactly for certain zonally averaged currents. The 
assumption of the existence of a specified zonal current is equivalent to the 
assumption of no upstream influence in the unbounded case. It is unlikely that 
such solutions can be realized in experiments with real fluids for the presence of 
viscosity, however small, causes ‘zonal influence’ independent of the magnitude 
of the viscosity at times larger than the spin-up time. For times smaller than the 
spin-up time decaying transients can cause zonal influence which increases in 
magnitude with decreasing viscosity. 

1. Introduction 
The slow flow of a rapidly rotating fluid over topography has been the subject 

of much recent theoretical discussion. It is well known that surface protuberances 
or depressions of sufficient height can block the flow; streamlines originating 
upstream of the obstacle go around rather than over it. The extent to which such 
blocking occurs in a fluid with non-zero stratification was discussed by Hide 
(1971) and Hogg (1973). In  these and other theoretical studies, solutions are 
obtained for steady flow by noting that the potential vorticity (relative vorticity 
plus suitably non-dimensionalized depth) is constant along a streamline. If each 
streamline is traced far upstream of the obstacle, where the potential vorticity 
is known, a simple linear problem usually results for the determination of the 
exact stream field everywhere. That the potential vorticity is known upstream 
constitutes what has become known as Long’s hypothesis or the condition of no 
upstream influence. In  the problem of stratified non-rotating flow of obstacles, 
McIntyre (1 972) has demonstrated that upstream influence occurs for inviscid 
transient motion bounded above and below. In  horizontally unbounded, weakly 
viscous flows he finds that the columnar disturbances responsible for the up- 
stream influence vanish with the viscosity when either the upper or the lower 
boundary is ‘no-slip’. We show below that this does not happen for weakly 
viscous, rapidly rotating flows over topography in a cyclic container and that 
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one must therefore question the physical realizability of solutions obtained 
using Longas hypothesis in such situations. 

Prom an experimentalist’s point of view, the use of extremely long tanks to 
study the delicate question of the validity of solutions based on zero upstream 
influence constitutes a difficult and often impractical problem. Thus many 
laboratory studies of such flows have been done in rotating cylinders of various 
types with either a body or ‘mountain’ moving through the fluid, or a stationary 
bump or field of bumps on the bottom of the container with motion driven by a 
differentially rotating horizontal disk in contact with the top of the fluid. An 
example of the former is Davies’s (1972) experiments on motion of a continuously 
stratified fluid past a sphere and an example of the latter is Hart’s (1972) study of 
baroclinic instability in a two-layer fluid over various bottom topographies. In  
a cylinder where the variable topography is not confined to a very small area of 
the bottom, it is no longer clear what is meant by ‘upstream’ since the container 
is cyclic. 

We shall show below that the specification of an upstream flow in an infinite 
channel, which yields a simple linear problem for the determination of an exact 
solution of the nonlinear potential-vorticity equation, is equivalent to specifying 
certain zonally averaged flows vo(r) in the cylindrically cyclic geometry. The 
problem of upstream influence is then restated as a question of whether or not 
the zonal flow needed to obtain an exact solution valid for all topographic scales 
(consistent with the quasi-geostrophic equations we shall be using, but still large 
enough to drive a strongly nonlinear response) is ‘influenced’ by the &dependent 
motions excited as fluid flows over the bump. The problem breaks up into two 
time regions. For those times substantially less than the spin-up time, transients 
caused by the introduction of the obstacle can, except for a few restrictive cases, 
cause permanent or growing distortions of the zonal current. Because of the 
difficulty of comparing time-dependent flow theory with experiment, since the 
details of the transients depend on how the obstacle is introduced or on how 
the current is turned on, we are more interested in cases where a small viscosity 
is present. Then, for times much greater than the spin-up time 7* = H/(vQ)g the 
transient effects will have disappeared and there will be no zonal influence apart 
from that of the steady motion itself. A t  these times a zonal influence entirely 
independent of viscosity will persist. 

2. Inviscid theory 
There are two main points we wish to demonstrate in this note. We shall first 

show that when the viscosity is zero the steady solution of a linearized potential- 
vorticity equation based on small topography is an exact solution for a certain 
fairly broad class of zonal flows. These simply calculable solutions can then be 
used in situations where the topography is large. The second, and major, point 
of this study is to examine the effects on these exact solutions of small viscosity, 
which leads to the presence of quasi-horizontal Ekman layers on rigid boundaries. 
It will be shown that any viscosity, no matter how small, will generate corrections 
to the linearized solutions, the largest of which are independent of the magnitude 
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FIUURE 1. Geometry for the study of slow flows over topography in a rotating fluid. 

of the viscosity. Hence the inviscid dynamics are singular in the sense that the 
presence of very small viscosity can cause substantial modifications to the 
inviscid solutions. 

These results are most easily demonstrated in the context of a one-layer 
fluid model. They can easily be extended to multi-layer fluids which have small 
friction at immiscible interfaces between isopycnal layers, although the algebra 
becomes rather cumbersome. The basic physical process which causes the zonal 
correction is not significantly affected by stratification provided i t  is not so 
strong as to choke off the Ekman suction velocity. Thus we consider the simple 
configuration shown in figure 1. A layer of homogeneous incompressible fluid is 
contained between a horizontal lid and a lower boundary which contains some 
general topography 

h" = Sh. h(r, O), 

where h(r, 0) is of order one. The mean depth of the fluid is H and its viscosity 
is v. Velocities have scale U ,  which is a measure of the speed of the flow incident 
on the topography. It is presumed that the system is rotating rapidly at  a rate 
0, so that the Rossby number R, = U / 2 0 L  based on the horizontal scale L of 
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either the basin or the mountain range is very small. Thus the velocities are 
primarily horizontal, independent of z and are in geostrophic balance : 

v = aP/ar, u = - r - w / a e ,  (2 .1) ,  (2 .2)  

where P is the dynamic pressure scaled by 2pUQL and u and v are the radial and 
azimuthal velocity components scaled by U.  

The governing prognostic equation, accurate to terms of the order of R, or 
Sh/H, is the well-known quasi-geostrophic vorticity equation. This expresses a 
balance between vorticity fluctuations following fluid columns and generation 
due to stretching of the planetary vorticity 2 R  by flow over topography or by 
suction into thin Ekman layers a t  the boundaries. Lateral friction is only 
important on horizontal scales much smaller than those of interest here and is 
neglected; v / 2 a L 2  << R,. 

Let w = V2P be the relative vorticity. Then the vorticity equation is 

awlat + J(P,  W )  = - aJ(P,  h )  + ~ ( k  . curl v[ - 0). (2 .3)  

The two parameters are 
a = Gh/HR, 5 O(1) ( 2 . 4 )  

and x = 2hEh/R, 5 O ( i ) ,  (2 .5)  

where E is the Ekman number v / 3 R H 2 .  It is assumed that, if non-zero, both a 
and x are much bigger than either R, or Sh/H, so that topography or bottom 
friction will dominate ageostrophic effects. 

We thus take (2 .3)  to be our governing equation. Because of the Jacobian 
operator 

) 
i aPaW a p a w  J ( P , w )  = - ----- 
r ( ar 88 a0 ar 

this equation is nonlinear. We have included the possibility of driving the flow 
in the basin by moving the upper lid at  velocity v[ w.  This will be useful below 
when we look for steady solutions when weak viscosity is present. The speed of 
the driving lid has scale U at a radius L. 

Let us begin by looking for steady inviscid solutions of (2 .3 ) .  It is convenient 
to write the non-dimensional topography h(r, 8) as the sum of a cyclic and an 
azimuthally averaged part : 

h = h’(r, 0 )  +fE(r), 

where the overbar denotes a zonal average generally defined by 

for any variable f. Under certain circumstances there are exact, steady, inviscid 
solutions of the nonlinear equation (2 .3 )  of the form 

P = Po(r) +aPl(r, 0) 

for which the differential equation for PI is linear. 
In  the absence of topography (a+O) we assume that a known zonal flow is 
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present. Any Po(r) distribution is allowed since J(Po, V2Po) = 0. Suppose that the 
modification Pl due to topography is described by the simplified equation 

This is obtained from (2.3) by neglecting time variations, viscous effects, the 
nonlinear self-interaction of the PI field and the interaction between the PI field 
and the cyclic part h’ of the topography. It is linear in Pl, and the solution 
P = Po + upl will be called the linearized solution. 

The above equation can be written as 

awl ap, ar --g(r)--  = -- ae ae 88 ’ 
where g awo/aP0 + aaE/8Po. (2.7) 

The quantity g is a measure of the zonal potential-vorticity fluctuation between 
zonal st,reamlines. The general solution of (2.6) is 

where 

With impermeable boundaries (2.8) is solved withpl( I ,@) = 0. 
In  the inviscid theory the free solution is not uniquely determined and must 

be specified on physical grounds. The Pl field is generated by an interaction 
between the zonal flow and the cyclic topography. There is no mechanism (in 
view of our neglect of self-interactions) by which a zonal component of Pl may 
occur. Thus, since p1 is cyclic, FI must be zero. 

If we want P = Po + ap, to be the total exact solution we must require that 
the nonlinear terms omitted from (2.6) vanish. These terms are 

a2 ag apq 
2rar a8 ‘ a2J(P1, V2Pl + h’) = - - - - 

Thus our linearized solution is an exact inviscid steady solution if g is a constant. 
The zonal component of the potential vorticity must be a linear function of Po. 
For general a this condition requires that both awo/aPo and ax/a& be constants. 
For particular values of a there may be situations where awo/aPo = -aaE/aPo 
at all radii. These are constraints on the zonal flow and the zonal component of 
the topography which must be satisfied if the easily calculated Po + apl solution 
is to satisfy the full inviscid equation. 

Let us note the relation of these exact linearized solutions to those obtained 
directly. It is usually argued that V2P + ah = G(P) for steady inviscid nonlinear 
solutions of the vorticity equation. G is a regular function of P. Upstream of the 
topography, i t  is assumed that P = Po and h = 0. Thus G(Po) = V2Po. 

G(P) = constant x P if awo/aPo = constant, 

and the resulting equation for P is linear and identical to (2.8) if = 0. In the 
cyclic geometry the condition that h be zero outside a finite region is not always 
enough to give a linear equation for P, as i t  is in an infinite channel. 
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Suppose that we wish to realize a situation where g' = 0. If we generate a 
zonal flow at an initial time with these properties, we must require that the 
mountain-induced flow causes no zonal influence which may alter Po. Referring 
to (2.9) it is seen that there is no mechanism for generating a higher-order zonal 
flow for any g(r ) .  The inviscid flow cannot produce zonal influence. It must 
come from either the transient flows during the setting-up of the experiment 
or from the action of viscosity in the steady state. The zonal influence during 
the transient stage of the flow depends on the details of the introduction of the 
topography or on the setting-up of the zonal current. There will generally be 
a non-zero order-a2 rectification of the transient field which produces a zonal 
influence which grows linearly with time in an inviscid fluid. In  the appendix i t  
is shown how the transients affect the zonal current. If the fluid is inviscid a 
steady state is never reached. This presents serious difficulties in an experimental 
test of the steady theory. However a real fluid possesses some viscosity. If 
viscous effects are small (E*/Ro < 1) the transients decay like exp ( - E3/Ro t ) .  
The zonal correction due to the presence of the transients then goes like 

(, f(r)/X) [e-2xt - e-xt]. 

Thus the zonal correction peaks a t  t = In 2 / x ,  about one spin-up time. Its peak 
value is proportional to 2-1 = R0/29EB and so increases with decreasing viscosity. 
None the less, at times substantially greater than the spin-up time t,: = H/(2Qv)B, 
the zonal influence of the transients and the transients themselves have negligible 
amplitudes. Because of the difficulty of correlating experiment and theory in 
the transient region (a difficulty which would seem to increase with decreasing 
E )  one perhaps would want to wait until viscosity had damped out all transients 
and concentrate on the steady flow structure for t* % t:. 

3. Steady slightly viscous motion 
We now wish to examine the role of viscosity in generating zonal corrections 

to the mean axisymmetric flow which would occur in the absence of the mountain. 
In  the example computed here we suppose that Et/Ro is of order a2, although 
the results can be generalized for E9/Rocc an for any n, n = 1 being the simplest. 
The governing equation is again (2.3), i.e. 

where the forcing on the right-hand side represents that in a typical laboratory 
situation where the fluid is driven from above by a differentially rotating lid. 
In  the absence of any mountains, the interior solution would be solid-body 
rotation at a rate half that of the driving frequency. Consider an expansion in 
powers of a. We write 

At order ao we have 
P = P0+aP1+a2P2+ ... . 

J(PO,V2PO) = 0 
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and we choose Po = Po(r) to be consistent a posteriori with a continuous para- 
meter space limit to a = 0, where only a zonal flow occurs. At O(a) ,  

J(Po,V2Pl+h)+J(Pl,V2Po) = 0 

so p1= P l + 4  
as before, where 

Let E = x/a2. Then a t  O(a2) 

v2pl = p l  auo/aPo - h, i ,  e)  = 0. 

Averaging (3.3) gives an equation for Po, namely 

V2P0 = 1, 

or Po = &r2. 

This is the basic forced axisymmetric flow in the absence of mountains, and 
satisfies our general inviscid conditions if ZCC r2.  The solution of (3.3) is 

p2 = PZ+F2(YL 

(3-4) 
2 a  

, - r a r  
V2p - -- (V2Fl)pl(r,0). where 

Fl and F, are as yet arbitrary. In  this viscous theory they are determined from 
higher-order equations. 

A t  O(a3) 

ga(v2p3)/ae = - Evy F~ +pl) - J(P,, vzp, + VZFJ - ~ ( p , ,  v q ) .  (3.5) 

Averaging in azimuth and using (3.4) we find that all terms are zero except that 
related to viscosity. Thus Fl = -p1. The full solution up to order a is obtained 
by solving (3.2) with h- h replacing h and Pl replacing pl .  Viscosity does not 
allow any zonally averaged currents a t  order a. Thus, up to order a, the solution 
with viscosity is identical to the inviscid one. 

We can write the O(a3) solution as 

p3 = P3+$3+ F3(r), 
where 
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We average over 8 and note that V2 (p2  + F2) = V2p,. Then we use (3.4), (3.6) 
and (3.7) to reduce the Jacobian terms that survive after the averaging has 
eliminated all those terms which have functions solely of r as one argument. 
This yields the very simple result 

The zonal influence E 2  = aF2/ar is given by 

(3.9) 

From (3.7) we see that p ,  is out of phase with the primary solution PI. This 
introduces a Reynolds stress of order a2E*/Ro which has a non-zero zonal average 
and is divergent in general. This zonally averaged Reynolds stress in turn forces 
a zonal flow which is independent of the magnitude of the viscosity, because 
both the phase shift which generates this zonal flow and its damping are linear 
in x. If (3.9) is non-zero an order-a2 zonal correction occurs which will cause 
harmonics to propagate through the system and render the linear solution lion- 
exact. That is, even if awo/aPo and aE/aPo are constants, the weakly viscous 
system has corrections of order a2 and higher. A careful inspection of the nature 
of the expansion shows that the first zonal correction will always be of order 
a2, regardless of the order of E*lRo. One might expect this from the E*/R, 
independence of G2. Formally this behaviour comes about becausez, is determined 
by balancing its viscous damping term, which is of order a2E*/Ro, with a Reynolds- 
stress divergence involving the product of p ,  gradients (order a )  and the first 
viscous correction to p ,  (order aE$/R,). 

In  the past the steady inviscid solutions have been used to investigate certain 
qualitative features such as blocking and flow reversal. The existence of such 
features usually results in having to specify a substantial value of a, which 
depends on the details of h and Po but is usually order one or greater. A s  long as 
the linear solution is exact i t  is permissible to let a take on large values. However, 
we have shown that viscosity always causes zonal influence of order a2 and 
higher. The dominant correction as a is increased from small values is inde- 
pendent of viscosity. The series solution presented in this section indicates that 
zonal influence will occur in the steady state. Because the radius of convergence 
of the series is not readily ascertained, and because higher-order terms are not 
easily calculated, its use in obtaining the solution a t  large a is limited. However, 
i t  does demonstrate the origin of the zonal correction. 

The simplest example illustrating the generation of zonal influence is obtained 
for solid-body basic rotation over a slope: 

Po = $r2, h = rcos8. 

Then = 0, awo/aPo = 0 and 

P = Po + +a(r - r3) cos 8. 

This is then an exact inviscid solution of (2.3). It applies a t  all a, and for example 
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FIGURE 2. Streamline (geostrophic pressure) pattern for flow over a ha'lf-slope. The basic 
state is cyclonic solid-body rotation. The PI field is contoured here with contour interval 
2.5 x 10-3. 

FIGURE 3. Contours of PI for a ridge. The contour interval is 2.5 x 10-3. 
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FIGURE 4. The zonal-influence function. This figure shows the 8-independent zonal correction 
forced by the horizontal Reynolds stresses set up by a mountain vortex (see figures 2 and 
3). Curve A is for 8 half-slope and B is for B ridge. 

predicts a counterflow near r = 1, 0 = 0 when a > 2. The zonal influence, from 
(3.9), is 

v 2  = i ( r 3 - r ) .  - 

It is opposite in sign to the basic state wo, and represents the retardation of the 
basic flow caused by the presence of the mountain. The zonal correction becomes 
significant long before a reaches 2, and its presence suggests that it is inappro- 
priate to predict a flow reversal from the inviscid theory regardless of how small 
the viscosity may be. 

Zonal influence will occur for flow over general topographies since there will 
always be a non-zero correlation between PI and h'.t Anticyclonic vortices (high 
pressure) will occur over rises and cyclonic vortices (low pressure) will occur 
over depressions. Figures 2-4 show computed stream fields and zonal influence 
E2 for solid-body rotation (Po = &r2) over 

rcose  for 101 &-, 
0 otherwise, 

(i) a half-slope h = 

t From (3.9) it follows that c,r2dr < 0 and hence that Zz + 0 for some r.  
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r(l-1602/lr2) for 181 G &r 
0 otherwise, 

(ii) a polar ridge h = 

667 

The stream fields demonstrate how a mountain vortex is generated directly over 
the topography. The zonal correction is almost everywhere opposite in sign to 
the basic flow, and is slightly larger for the polar ridge, which has larger slopes 
and hence excites a stronger pl response. 

4. Conclusions 
We have shown that the steady inviscid finite-amplitude quasi-geostrophic 

flow of a cylindrically bounded fluid over an obstacle is governed by a simple 
linear equation when the zonal potential vorticity is a linear function of the 
zonal stream function. The presence of viscosity generates a viscosity-indepen- 
dent order-a2 correction to an initial zonal current which satisfies the criterion 
for exactness of the linear solution. This result suggests that in a real fluid, even 
when the viscosity is very small, the exact linear inviscid solution is inaccurate at 
finite amplitude. 

The author would like to express his appreciation to the referees, whose 
comments helped to improve the original manuscript. This research was sup- 
ported by the National Science Foundation, grant DES 74-14356. 

Appendix 
To investigak the nature of the transients in a problem where the topography 

is switched on a t  time t = 0,  consider the time-dependent vorticity equation. 
The governing equation €or the linear O(a) response is 

where H ( t )  is the Heaviside step function. For no motion a t  t = 0 the transient 
part of the solution is (with Po = $r2) 

Is there any rectification which will leave an impression on the zonal flow? 
Does J(Pl, w l )  have a non-zero average which is quasi-steady for small x? Let 

-h  J ( I  r )  
2 3 W n  = 2 + hmn Jn(Ln  r ) .  P1n = E mn 

mn 

m m Imn 

Then the equation for the zonally averaged order-a2 pressure $( r ,  t )  is 

If E4 = 0 (no viscosity), a permanent growing zonal correction will exist unless 
h,,, is real or unless his unimodal in m for each n. Then there will be no O(a2) 
zonal correction, although there may still be zonal influence at O(a4). 
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If viscosity is present we can solve (AZ) for the O(a2) correction, assuming 
that hmn does not satisfy any of the previous requirements (i.e. we assume that 
the topographic contour lines are tilted, e.g. not purely radial). We can solve for 
E~ = a#/ar. Let 

where 

Subject to 52 = 0 a t  t = 0, we find 

m 

E2 = B(t) Z An(r), 
n = l  

An = - n Im (Pg W%)/V, (a/at + x) B = - e-2Xt. 

B = X-l[e-%t - e-xt]. 
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